\(\int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx\) [677]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 109 \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\sin ^7(c+d x)}{7 a d}-\frac {\sin ^8(c+d x)}{8 a d}-\frac {2 \sin ^9(c+d x)}{9 a d}+\frac {\sin ^{10}(c+d x)}{5 a d}+\frac {\sin ^{11}(c+d x)}{11 a d}-\frac {\sin ^{12}(c+d x)}{12 a d} \]

[Out]

1/7*sin(d*x+c)^7/a/d-1/8*sin(d*x+c)^8/a/d-2/9*sin(d*x+c)^9/a/d+1/5*sin(d*x+c)^10/a/d+1/11*sin(d*x+c)^11/a/d-1/
12*sin(d*x+c)^12/a/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2915, 12, 90} \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\sin ^{12}(c+d x)}{12 a d}+\frac {\sin ^{11}(c+d x)}{11 a d}+\frac {\sin ^{10}(c+d x)}{5 a d}-\frac {2 \sin ^9(c+d x)}{9 a d}-\frac {\sin ^8(c+d x)}{8 a d}+\frac {\sin ^7(c+d x)}{7 a d} \]

[In]

Int[(Cos[c + d*x]^7*Sin[c + d*x]^6)/(a + a*Sin[c + d*x]),x]

[Out]

Sin[c + d*x]^7/(7*a*d) - Sin[c + d*x]^8/(8*a*d) - (2*Sin[c + d*x]^9)/(9*a*d) + Sin[c + d*x]^10/(5*a*d) + Sin[c
 + d*x]^11/(11*a*d) - Sin[c + d*x]^12/(12*a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {(a-x)^3 x^6 (a+x)^2}{a^6} \, dx,x,a \sin (c+d x)\right )}{a^7 d} \\ & = \frac {\text {Subst}\left (\int (a-x)^3 x^6 (a+x)^2 \, dx,x,a \sin (c+d x)\right )}{a^{13} d} \\ & = \frac {\text {Subst}\left (\int \left (a^5 x^6-a^4 x^7-2 a^3 x^8+2 a^2 x^9+a x^{10}-x^{11}\right ) \, dx,x,a \sin (c+d x)\right )}{a^{13} d} \\ & = \frac {\sin ^7(c+d x)}{7 a d}-\frac {\sin ^8(c+d x)}{8 a d}-\frac {2 \sin ^9(c+d x)}{9 a d}+\frac {\sin ^{10}(c+d x)}{5 a d}+\frac {\sin ^{11}(c+d x)}{11 a d}-\frac {\sin ^{12}(c+d x)}{12 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.62 \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\sin ^7(c+d x) \left (3960-3465 \sin (c+d x)-6160 \sin ^2(c+d x)+5544 \sin ^3(c+d x)+2520 \sin ^4(c+d x)-2310 \sin ^5(c+d x)\right )}{27720 a d} \]

[In]

Integrate[(Cos[c + d*x]^7*Sin[c + d*x]^6)/(a + a*Sin[c + d*x]),x]

[Out]

(Sin[c + d*x]^7*(3960 - 3465*Sin[c + d*x] - 6160*Sin[c + d*x]^2 + 5544*Sin[c + d*x]^3 + 2520*Sin[c + d*x]^4 -
2310*Sin[c + d*x]^5))/(27720*a*d)

Maple [A] (verified)

Time = 0.38 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.64

method result size
derivativedivides \(-\frac {\frac {\left (\sin ^{12}\left (d x +c \right )\right )}{12}-\frac {\left (\sin ^{11}\left (d x +c \right )\right )}{11}-\frac {\left (\sin ^{10}\left (d x +c \right )\right )}{5}+\frac {2 \left (\sin ^{9}\left (d x +c \right )\right )}{9}+\frac {\left (\sin ^{8}\left (d x +c \right )\right )}{8}-\frac {\left (\sin ^{7}\left (d x +c \right )\right )}{7}}{a d}\) \(70\)
default \(-\frac {\frac {\left (\sin ^{12}\left (d x +c \right )\right )}{12}-\frac {\left (\sin ^{11}\left (d x +c \right )\right )}{11}-\frac {\left (\sin ^{10}\left (d x +c \right )\right )}{5}+\frac {2 \left (\sin ^{9}\left (d x +c \right )\right )}{9}+\frac {\left (\sin ^{8}\left (d x +c \right )\right )}{8}-\frac {\left (\sin ^{7}\left (d x +c \right )\right )}{7}}{a d}\) \(70\)
parallelrisch \(-\frac {\left (\sin \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )-7 \sin \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )+21 \sin \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )-35 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (14560 \cos \left (2 d x +2 c \right )-1155 \sin \left (5 d x +5 c \right )-6006 \sin \left (d x +c \right )-5313 \sin \left (3 d x +3 c \right )+2520 \cos \left (4 d x +4 c \right )+14600\right ) \left (\cos \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )+7 \cos \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )+21 \cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+35 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7096320 a d}\) \(149\)
risch \(-\frac {\sin \left (11 d x +11 c \right )}{11264 d a}-\frac {\cos \left (12 d x +12 c \right )}{24576 a d}+\frac {5 \sin \left (d x +c \right )}{512 a d}+\frac {\cos \left (10 d x +10 c \right )}{10240 a d}+\frac {\sin \left (9 d x +9 c \right )}{9216 d a}+\frac {\cos \left (8 d x +8 c \right )}{4096 a d}+\frac {5 \sin \left (7 d x +7 c \right )}{7168 d a}-\frac {5 \cos \left (6 d x +6 c \right )}{6144 a d}-\frac {\sin \left (5 d x +5 c \right )}{1024 d a}-\frac {5 \cos \left (4 d x +4 c \right )}{8192 a d}-\frac {5 \sin \left (3 d x +3 c \right )}{1536 d a}+\frac {5 \cos \left (2 d x +2 c \right )}{1024 a d}\) \(203\)

[In]

int(cos(d*x+c)^7*sin(d*x+c)^6/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/a/d*(1/12*sin(d*x+c)^12-1/11*sin(d*x+c)^11-1/5*sin(d*x+c)^10+2/9*sin(d*x+c)^9+1/8*sin(d*x+c)^8-1/7*sin(d*x+
c)^7)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00 \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {2310 \, \cos \left (d x + c\right )^{12} - 8316 \, \cos \left (d x + c\right )^{10} + 10395 \, \cos \left (d x + c\right )^{8} - 4620 \, \cos \left (d x + c\right )^{6} + 40 \, {\left (63 \, \cos \left (d x + c\right )^{10} - 161 \, \cos \left (d x + c\right )^{8} + 113 \, \cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right )}{27720 \, a d} \]

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/27720*(2310*cos(d*x + c)^12 - 8316*cos(d*x + c)^10 + 10395*cos(d*x + c)^8 - 4620*cos(d*x + c)^6 + 40*(63*co
s(d*x + c)^10 - 161*cos(d*x + c)^8 + 113*cos(d*x + c)^6 - 3*cos(d*x + c)^4 - 4*cos(d*x + c)^2 - 8)*sin(d*x + c
))/(a*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**7*sin(d*x+c)**6/(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.63 \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {2310 \, \sin \left (d x + c\right )^{12} - 2520 \, \sin \left (d x + c\right )^{11} - 5544 \, \sin \left (d x + c\right )^{10} + 6160 \, \sin \left (d x + c\right )^{9} + 3465 \, \sin \left (d x + c\right )^{8} - 3960 \, \sin \left (d x + c\right )^{7}}{27720 \, a d} \]

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/27720*(2310*sin(d*x + c)^12 - 2520*sin(d*x + c)^11 - 5544*sin(d*x + c)^10 + 6160*sin(d*x + c)^9 + 3465*sin(
d*x + c)^8 - 3960*sin(d*x + c)^7)/(a*d)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.63 \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {2310 \, \sin \left (d x + c\right )^{12} - 2520 \, \sin \left (d x + c\right )^{11} - 5544 \, \sin \left (d x + c\right )^{10} + 6160 \, \sin \left (d x + c\right )^{9} + 3465 \, \sin \left (d x + c\right )^{8} - 3960 \, \sin \left (d x + c\right )^{7}}{27720 \, a d} \]

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/27720*(2310*sin(d*x + c)^12 - 2520*sin(d*x + c)^11 - 5544*sin(d*x + c)^10 + 6160*sin(d*x + c)^9 + 3465*sin(
d*x + c)^8 - 3960*sin(d*x + c)^7)/(a*d)

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.76 \[ \int \frac {\cos ^7(c+d x) \sin ^6(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {{\sin \left (c+d\,x\right )}^7}{7\,a}-\frac {{\sin \left (c+d\,x\right )}^8}{8\,a}-\frac {2\,{\sin \left (c+d\,x\right )}^9}{9\,a}+\frac {{\sin \left (c+d\,x\right )}^{10}}{5\,a}+\frac {{\sin \left (c+d\,x\right )}^{11}}{11\,a}-\frac {{\sin \left (c+d\,x\right )}^{12}}{12\,a}}{d} \]

[In]

int((cos(c + d*x)^7*sin(c + d*x)^6)/(a + a*sin(c + d*x)),x)

[Out]

(sin(c + d*x)^7/(7*a) - sin(c + d*x)^8/(8*a) - (2*sin(c + d*x)^9)/(9*a) + sin(c + d*x)^10/(5*a) + sin(c + d*x)
^11/(11*a) - sin(c + d*x)^12/(12*a))/d